Programa de:

Código: Q1805

Simulación de Procesos I

Fecha Actualización: 02/02/2024

CARRERAS PARA LAS QUE SE DICTA						
Carrera	Plan	Carácter	Cantidad de Semana	s	Año	Semestre
Ingeniería Química	2010	Obligatoria	Totales: 0			
	2018		Clases:	Evaluaciones:	3	5
		CORRELATI	VIDADES			
PARA CURSAR			PARA APROBAR			
Química: F1304 - Matemática C Regularizada		Química: F1304 - Matemátic	a C Aprobada			

DATOS GENERALES			PLANTEL DOCENTE
Departamento: Quimica Área: Sin Area Tipificación: Ciencias Basicas / Tecnologicas Basicas			Profesor Titular: Goñi Sandro Mauricio Profesor Adjunto: Torrez Irigoyen Ricardo Martin Profesor Adjunto: Arballo Javier Ramiro
HORAS BLOQUE			Ayudante Diplomado: Martinez Panizza Rocío
Bloque de CB	Matemática	0.0	Ayddanic Diplomado. Martinez Famzza Rocio
	Física	0.0	
	Química	0.0	
	Informática	48.0	
	Total	48	
Bloque de TB	48.0		
Bloque de TA	0.0		
Bloque de Complementarias	0.0		
Total	96		

CARGA HORARIA						
HORAS DE CLASE						
Total	es: 96	Semanales: 6				
TEORÍA 48.0	PRÁCTICA 48.0	TEORÍA 3	PRÁCTICA 3			

FORMACIÓN PRÁCTICA

Formación Experimental 0.0	Resol. de Problemas 8.0	Proyecto y Diseño 0.0	PPS 0.0	
TOTAL COMPUTABLES 96.0		HORAS DE ESTUDIO ADICIONALES (NO ESCOLARIZADAS) 0.0		

OBJETIVOS:

Proveer al alumno las herramientas matemáticas específicas, los elementos de programación de alto nivel y los conocimientos básicos de planteo y solución de balances - fundamentalmente macroscópicos - de materia y energía que serán imprescindibles para el modelado y simulación orientados a la ingeniería, tanto a nivel de diseñador de aplicaciones como, en el más frecuente, de usuario de softwares específicos de simulación. Asimismo, aplicar los conocimientos obtenidos a la resolución de problemas "reales" de Ingeniería Química.

PROGRAMA SINTÉTICO:

- 1) CALCULO NUMERICO APLICADO A INGENIERIA QUIMICA: Introducción general Diagramación. Aplicación de búsqueda de raíces de funciones, integración aproximada y regresión lineal y no lineal a casos de Ingeniería Química. Resolución de sistemas de ecuaciones lineales. Resolución numérica de ecuaciones diferenciales ordinarias del tipo de valor inicial.
- 2) USO DE SOFTWARES COMERCIALES DE CALCULO NUMERICO: Utilización de softwares comerciales para solución de los casos tratados en el punto 1.
- 3) LENGUAJES DE PROGRAMACION DE ALTO NIVEL: Lenguajes de programación. Clasificación de los lenguajes. Estudio de un lenguaje de programación de alto nivel.
- 4) ECUACIONES DIFERENCIALES ORDINARIAS DE TIPO VALOR DE CONTORNO Y DE ECUACIONES DIFERENCIALES PARCIALES. Métodos numéricos de resolución. Método de diferencias finitas. Programación de sus soluciones.
- 5) BALANCES MACROSCOPICOS DE MATERIA Y ENERGIA. Unidades y bases de cálculo. Diagramas de flujo. Equipos simples: Mezcladores, separadores, reactores. Sistemas con reciclo, derivación y purga. Corrientes paralelas y contracorrientes. Operaciones en cascada. Balances combinados de materia y energía. Sistemas en estado transitorio.

PROGRAMA ANALÍTICO:

AÑO DE APROBACIÓN: 2016

1) CÁLCULO NUMERICO APLICADO A INGENIERIA QUIMICA:

Introducción general: Problema numérico, algoritmos, errores, convergencia, precisión, requerimientos de memoria.

Diagramación: Distintos esquemas. Aplicación a la solución de problemas lógicos.

Búsqueda de raíces de funciones: Métodos mas frecuentes.

Integración aproximada: Métodos de Newton-Cotes.

Regresión lineal y no lineal: Aplicación a casos típicos de la Ingeniería Química.

Resolución de sistemas de ecuaciones lineales: Métodos exactos y numéricos.

Resolución numérica de ecuaciones diferenciales ordinarias del tipo de valor inicial. Métodos de Runge-Kutta y de predictor-corrector.

2) USO DE SOFTWARES COMERCIALES DE CALCULO NUMERICO:

Utilización de un software comercial de programación y de rutinas matemáticas para la solución de los casos tratados en el punto 1, aprovechando las rutinas ya incorporadas al mismo.

3) LENGUAJES DE PROGRAMACION DE ALTO NIVEL:

Lenguajes de programación. Clasificación de los lenguajes. Características de los distintos tipos.

Estudio de un entorno que permita desarrollar programas en lenguajes de alto nivel, ejecutarlos y graficar los resultados. Debe incorporar rutinas matemáticas, procesamiento simbólico y módulos preprogramados para simulación de sistemas dinámicos y no lineales.

4) ECUACIONES DIFERENCIALES ORDINARIAS DE TIPO VALOR DE CONTORNO Y ECUACIONES DIFERENCIALES PARCIALES:

Métodos numéricos de resolución. Método de diferencias finitas.

Programación de sus soluciones. Utilización de softwares de solución existentes.

5) BALANCES MACROSCOPICOS DE MATERIA Y ENERGIA:

Unidades, estequiometría y bases de cálculo.

Diagramas de flujo. Representación de sistemas.

Metodología general de planteo y solución de los balances de materia. Sistemas abiertos y cerrados.

Equipos simples: Mezcladores, separadores, reactores.

Sistemas con reciclo, derivación y purga.

Corrientes paralelas y contracorrientes. Operaciones en cascada.

Balances de energía. Planteo, simplificaciones. Sistemas abiertos y cerrados.

Balances combinados de materia y energía. Sistemas en estado estacionario y en transitorio.

Método de cálculo para sistemas complejos.

ACTIVIDADES PRÁCTICAS:

METODOLOGÍA DE ENSEÑANZA:

El curso incluye - en paralelo - actividades teórico-prácticas y seminarios/trabajo en gabinete de computación.ACTIVIDADES TEORICO-PRACTICAS:Todos los contenidos teóricos se dictan de manera efectiva y presencial en relación estrecha con variados ejemplos de aplicación, que dan simultáneamente una visión clara de la fundamentación y de su traslado a resultados prácticos.SEMINARIOS/TRABAJO EN GABINETE DE COMPUTACIONLos seminarios tratan en paralelo a las clases teórico-prácticas ejemplos de cálculo adicionales - y generalmente más desarrollados - de los temas vistos en las clases.El trabajo en gabinete de computación incluye una ejercitación breve en los softwares/lenguajes a utilizar y el uso/desarrollo de software específico directamente relacionado a los temas desarrollados en las clases teórico-prácticas.

SISTEMA DE EVALUACIÓN:

Se seguirá el esquema general establecido por la Facultad de Ingeniería.La Asignatura se divide en dos módulos, cada uno con dos oportunidades de evaluación y una tercera fecha "flotante" en la que se puede rendir uno cualquiera de dichos módulos.La evaluación de cada módulo incluirá - por separado - contenidos teóricos y prácticos, cuya calificación permitirá otorgar o no la aprobación en función de las distintas posibilidades establecidas en la reglamentación vigente. (Promoción Directa y habilitación para rendir la Promoción por Examen Final).

BIBLIOGRAFÍA:

- Bird, R.B., Stewart, W.E.y Lightfoot, E.N.: Fenómenos de Transporte (1964). Reverté (DIQ).
- Chapra, S.C. y Canale, R.P.: Introduction to computing for engineers (1994). Mc Graw-Hill (DIQ).
- Chapra, S.C. y Canale, R.P.: Métodos Numéricos para Ingenieros (1988). Mc Graw-Hill (DIQ).
- García Merayo, F.: Programación en FORTRAN 77. Incluye Introducción al FORTRAN 90 (1996). Paraninfo (DIQ).
- Gordon, J.: Algoritmos Numéricos (1985). Ed. del autor (DIQ).
- Henley, E.J. y Rosen, E.M.: Cálculo de Balances de Materia y Energía (1973). Reverté (DIQ).
- Himmelblau, D.: Principios Básicos y Cálculos en Ingeniería Química. (1997). Prentice-Hall (DIQ).

Bibliografía complementaria:

- Anónimo: Microsoft Visual Basic 5.0 Programmer's Guide (1997). Microsoft Press (DIQ).
- Brauer, J.R.: What every Engineer Should Know about Finite Element Analysis (1994). M. Dekker (DIQ).
- Cárcel Ejarque, F.: Mathcad 7 Professional (1998). Anaya Multimedia (CIDCA).
- Costa Novella, E.: Ingeniería Química (Vols. 1 a 7) (1985). Alhambra Universidad (DIQ).
- Ellis, T.P.M., Philips, I.R. y Lakey, T.M.: FORTRAN 90 Programming (1996). Addison-Wesley (DIQ).
- Fishwick, P.: Simulation, Model design and Execution: Building Digital Worlds (1993). Prentice Hall (DIQ).
- Gould, H. y Tobochnik, J.: Introduction to Computer Simulation Methods.(1996). Addison-Wesley (DIQ).
- Ingels, D.M.: What every Engineer should Know about Computer Modelling and Simulation (1985). Marcel Dekker (DIQ).
- López Román, L.: Programación Estructurada, un Enfoque Algorítmico (1995). COMPUTEC (DIQ).
- Mascheroni, J.M.: Curso Introductorio a la Programación en Microsoft Visual Basic 6.0 (2000). (Gabinete de Computación Carlos G. Gioia).
- Michavila, F. y Gavete, L.: Programación y Cálculo Numérico (1985). Reverté (DIQ).
- Onsins, J. v Arboles, S.: Visual Basic 4 (1996). INFORBOOK'S (DIQ).
- Press, W., Flannery, B., Teukolsky, S. & Vetterling, W.: Numerical recipes in PASCAL: The art of scientific computing (1989). Cambridge University Press (DIO).
- Press, W., Teukolsky, S., Vetterling, W. y Flannery, B.: Numerical recipes in FORTRAN: The art of scientific computing (1992). Cambridge University Press (DIQ).
- Press, W., Vetterling, W., Teukolsky, S. y Flannery, B.: Numerical Recipes Example Book (FORTRAN), 2nd Ed. Cambridge University Pr (DIQ)ess.

MATERIAL DIDÁCTICO:

- "Introducción a la Computación Digital" Alicia N. Califano y Rodolfo H. Mascheroni; 18 pags. (1986).
- "Breve Introducción al Cálculo Numérico" Sergio A. Giner y Rodolfo H. Mascheroni; 27 pags. (1989).
- "Lectura e impresión de arreglos en FORTRAN77" Rodolfo H. Mascheroni, Sergio A. Giner y Sergio P. Bressa, UNLP; (1990).
- "Resolución numérica de ecuaciones diferenciales por el método de las diferencias finitas" Viviana O. Salvadori; 12 pags. (1990).
- "Introducción a los Balances de Materia" Rodolfo H. Mascheroni y Laura A. Campañone; 46 pags., (1996).
- "Introducción al Cálculo Numérico Aplicado a Ingeniería Química" Sergio A. Giner y Rodolfo H. Mascheroni; 47 pags. (2002).
- "Guía de aprendizaje para la utilización del compilador COMPAQ VISUAL FORTRAN" Martín Moreda y Sergio A. Giner; 24 pags. (2002).

ACTIVIDAD LABORATORIO-CAMPO: